Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
1.
Bull Entomol Res ; : 1-13, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563228

RESUMO

The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a highly damaging invasive omnivorous pest that has developed varying degrees of resistance to commonly used insecticides. To investigate the molecular mechanisms of tolerance to tetraniliprole, spinetoram, and emamectin benzoate, the enzyme activity, synergistic effect, and RNA interference were implemented in S. frugiperda. The functions of cytochrome P450 monooxygenase (P450) in the tolerance to tetraniliprole, spinetoram, and emamectin benzoate in S. frugiperda was determined by analysing changes in detoxification metabolic enzyme activity and the effects of enzyme inhibitors on susceptibility to the three insecticides. 102 P450 genes were screened via transcriptome and genome, of which 67 P450 genes were differentially expressed in response to tetraniliprole, spinetoram, and emamectin benzoate and validated by quantitative real-time PCR. The expression patterns of CYP9A75, CYP340AA4, CYP340AX8v2, CYP340L16, CYP341B15v2, and CYP341B17v2 were analysed in different tissues and at different developmental stages in S. frugiperda. Silencing CYP340L16 significantly increased the susceptibility of S. frugiperda to tetraniliprole, spinetoram, and emamectin benzoate. Furthermore, knockdown of CYP340AX8v2, CYP9A75, and CYP341B17v2 significantly increased the sensitivity of S. frugiperda to tetraniliprole. Knockdown of CYP340AX8v2 and CYP340AA4 significantly increased mortality of S. frugiperda to spinetoram. Knockdown of CYP9A75 and CYP341B15v2 significantly increased the susceptibility of S. frugiperda to emamectin benzoate. These results may help to elucidate the mechanisms of tolerance to tetraniliprole, spinetoram and emamectin benzoate in S. frugiperda.

2.
Int J Biol Macromol ; 267(Pt 1): 131459, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593893

RESUMO

Insect resistance evolution poses a significant threat to the advantages of biopesticides and transgenic crops utilizing insecticidal Cry-toxins from Bacillus thuringiensis (Bt). However, there is limited research on the relationship between transcriptional regulation of specific toxin receptors in lepidopteran insects and their resistance to Bt toxins. Here, we report the positive regulatory role of the SfGATAe transcription factor on the expression of the ABCC2 gene in Spodoptera frugiperda. DNA regions in the SfABCC2 promoter that are vital for regulation by SfGATAe, utilizing DAP-seq technology and promoter deletion mapping. Through yeast one-hybrid assays, DNA pull-down experiments, and site-directed mutagenesis, we confirmed that the transcription factor SfGATAe regulates the core control site PBS2 in the ABCC2 target gene. Tissue-specific expression analysis has revealed that SfGATAe is involved in the regulation and expression of midgut cells in the fall armyworm. Silencing SfGATAe in fall armyworm larvae resulted in reduced expression of SfABCC2 and decreased sensitivity to Cry1Ac toxin. Overall, this study elucidated the regulatory mechanism of the transcription factor SfGATAe on the expression of the toxin receptor gene SfABCC2 and this transcriptional control mechanism impacts the resistance of the fall armyworm to Bt toxins.

3.
Pestic Biochem Physiol ; 200: 105827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582591

RESUMO

In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.


Assuntos
Ecdisteroides , Inseticidas , Pirazóis , ortoaminobenzoatos , Animais , Spodoptera , Metabolismo dos Lipídeos , Larva , Inseticidas/toxicidade , Carboidratos
4.
Pestic Biochem Physiol ; 200: 105839, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582601

RESUMO

Lepidopteran insects are refractory to RNA interference (RNAi) response, especially to orally delivered double-stranded RNA (dsRNA). High nuclease activity in the midgut lumen is proposed as one of the major reasons for RNAi insensitivity. We identified three dsRNase genes highly expressed in the midgut of fall armyworm (FAW), Spodoptera frugiperda. The genomic region harboring those three dsRNase genes was deleted using the CRISPR-Cas9-mediated genome editing method. A homozygous line with deletion of three dsRNase genes was produced. dsRNA degradation by midgut lumen contents of mutant larvae was lower than in wild-type larvae. Feeding dsRNA targeting the inhibitor of apoptosis (IAP) gene increased knockdown of the target gene and mortality in mutants compared to wild-type larvae. These results suggest that dsRNases in the midgut contribute to RNAi inefficiency in FAW. Formulations that protect dsRNA from dsRNase degradation may improve RNAi efficiency in FAW and other lepidopteran insects.


Assuntos
Sistemas CRISPR-Cas , RNA de Cadeia Dupla , Animais , Interferência de RNA , Spodoptera/genética , Spodoptera/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Insetos/genética , Larva/genética , Larva/metabolismo
5.
Plants (Basel) ; 13(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611463

RESUMO

Inoculation with rhizobacteria and feeding by herbivores, two types of abiotic stress, have been shown to increase the production of secondary metabolites in plants as part of the defense response. This study explored the simultaneous effects of inoculation with Bacillus amyloliquefaciens GB03 (a PGPR species) and herbivory by third-instar Spodoptera frugiperda larvae on essential oil (EO) yield and volatile organic compound (VOC) emissions in Ocimum basilicum plants. The density of glandular trichomes was also examined, given that they are linked to EO production and VOC emission. Herbivory increased EO content, but inoculation on its own did not. When combined, however, the two treatments led to a 10-fold rise in EO content with respect to non-inoculated plants. VOC emissions did not significantly differ between inoculated and non-inoculated plants, but they doubled in plants chewed by the larvae with respect to their undamaged counterparts. Interestingly, no changes were observed in VOC emissions when the treatments were tested together. In short, the two biotic stressors elicited differing plant defense responses, mainly when EO was concerned. PGPR did not stimulate EO production, while herbivory significantly enhanced it and increased VOC emissions. The combined treatment acted synergistically, and in this case, PGPR inoculation may have had a priming effect that amplified plant response to herbivory. Peltate trichome density was higher in inoculated plants, those damaged by larvae, and those subjected to the combination of both treatments. The findings highlight the intricate nature of plant defense mechanisms against various stressors and hint at a potential strategy to produce essential oil through the combined application of the two stressors tested here.

6.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611746

RESUMO

Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.


Assuntos
Quitinases , Inseticidas , Animais , Humanos , Quitinases/genética , Quitinases/farmacologia , Larva , Serratia marcescens/genética , Zea mays , Spodoptera , Escherichia coli , Clonagem Molecular , Produtos Agrícolas , Inseticidas/farmacologia
7.
Pest Manag Sci ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587094

RESUMO

BACKGROUND: The fall armyworm (FAW, Spodoptera frugiperda (J.E. Smith)) is a polyphagous agricultural pest with rapidly evolving adaptations to host plants. We found the oral secretion (OS) of FAW from different plants influences plant defense response differentially, suggesting its role in adapting to host plants. However, the protein expression profile of FAW OS respond to different plants is largely unknown. RESULTS: Here, from the mass spectrometry assay, we identified a total of 256 proteins in the OS of FAW fed on cotton (Gossypium hirsutum L.), tobacco (Nicotiana benthamiana Domin), maize (Zea mays L.) and artificial diet. The FAW OS primarily comprise of 60 proteases, 32 esterases and 92 non-enzymatic proteins. It displays high plasticity across different diets. We found that more than half of the esterases are lipases which have been reported as insect elicitors to enhance plant defense response. The lipase accumulation in cotton-fed larvae was the highest, followed by maize-fed larvae. In the presence of lipase inhibitors, the enhanced induction on defense genes in wounded leaves by OS was attenuated. However, the putative effectors were most highly accumulated in the OS from FAW larvae fed on maize compared to those fed on other diets. We identified that one of them (VRLP4) reduces the OS-mediated induction on defense genes in wounded leaves. CONCLUSION: Together, our investigation presents the proteomic landscape of the OS of FAW influenced by different diets and reveals diet-mediated plasticity of OS is involved in FAW adaptation to host plants. © 2024 Society of Chemical Industry.

8.
J Agric Food Chem ; 72(15): 8423-8433, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565327

RESUMO

Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.


Assuntos
Alcaloides , Benzodioxóis , Inseticidas , Piperidinas , Alcamidas Poli-Insaturadas , Trealase , Animais , Larva , Spodoptera , Trealase/genética , Inseticidas/farmacologia
9.
Sci Rep ; 14(1): 7118, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532112

RESUMO

Invasive alien species (IAS) pose a severe threat to global agriculture, with their impact projected to escalate due to climate change and expanding international trade. The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), a native of the Americas, has rapidly spread across various continents, causing significant damage to several food crops, especially maize. Integrated pest management (IPM) programs are vital for sustainable FAW control, combining multiple strategies for sustainable results. Over three consecutive years, 2019-20, 2020-21 and 2021-22, the field demonstrations were conducted in semiarid regions of India, testing a four-component IPM approach viz., pheromone traps, microbial, botanicals and ETL based applications of insecticides against farmers' practices (sole insecticide application). IPM implementation led to substantial reductions in FAW infestation. Furthermore, egg mass and larvae infestations were significantly lower in IPM-adopted villages compared to conventional practices. Pheromone-based monitoring demonstrated a consistent reduction in adult moth populations. The lowest technology gap (10.42), extension gap (8.33) and technology index (12.25) was recorded during 2020-21. The adoption of IPM led to increased maize yields (17.49, 12.62 and 24.87% over control), higher net returns (919, 906.20 and 992.93 USD), and favourable benefit-cost ratios (2.74, 2.39 and 2.33) compared to conventional practices respectively during 2019-20, 2020-21 and 2021-22. The economic viability of IPM strategies was evident across three consecutive years, confirming their potential for sustainable FAW management in the semiarid region of India. These strategies hold promise for adoption in other parts of the world sharing similar climatic conditions.


Assuntos
Fazendeiros , Inseticidas , Animais , Humanos , Spodoptera , Zea mays , Comércio , Internacionalidade , Controle de Pragas , Índia , Feromônios
10.
Biology (Basel) ; 13(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534430

RESUMO

Invasive alien species (IAS) are a major biosecurity threat affecting globalisation and the international trade of agricultural products and natural ecosystems. In recent decades, for example, field crop and postharvest grain insect pests have independently accounted for a significant decline in food quantity and quality. Nevertheless, how their interaction and cumulative effects along the ever-evolving field production to postharvest continuum contribute towards food insecurity remain scant in the literature. To address this within the context of Africa, we focus on the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), and the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), two of the most important field and postharvest IAS, respectively, that have invaded Africa. Both insect pests have shown high invasion success, managing to establish themselves in >50% of the African continent within a decade post-introduction. The successive and summative nature of field and postharvest damage by invasive insect pests on the same crop along its value chain results in exacerbated food losses. This systematic review assesses the drivers, impacts and management of the fall armyworm and larger grain borer and their effects on food systems in Africa. Interrogating these issues is important in early warning systems, holistic management of IAS, maintenance of integral food systems in Africa and the development of effective management strategies.

11.
Insect Mol Biol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549231

RESUMO

REPAT (response to pathogen) is an immune-associated gene family that plays important roles in insect immune response to pathogens. Although nine REPAT genes have been identified in Spodoptera frugiperda (Lepidoptera: Noctuidae) currently, their functions and mechanisms in the immune response to pathogens still remain unclear. Therefore, SfREPAT38, a pathogen response gene (REPAT) of S. frugiperda, was characterised and its function was analysed. The results showed that SfREPAT38 contains a signal peptide and a transcription activator MBF2 (multi-protein bridging factor 2) domain. Quantitative real-time polymerase chain reaction analysis showed that SfREPAT38 was highly expressed in the sixth-instar larvae (L6) and was the highest in expression in the midgut of L6. We found that the expression of SfREPAT38 could be activated by challenge with four microbial pathogens (Bacillus thuringiensis, Metarhizium anisopliae, Spodoptera exigua nuclearpolyhedrosis and Escherichia coli), except 12 h after E. coli infection. Furthermore, the SfREPAT38 expression levels significantly decreased at 24, 48 and 72 h after SfREPAT38 dsRNA injection or feeding. Feeding with SfREPAT38 dsRNA significantly decreased the weight gain of S. frugiperda, and continuous feeding led to the death of S. frugiperda larvae from the fourth day. Moreover, SfREPAT38 dsRNA injection resulted in a significant decrease of weight gain on the fifth day. Silencing SfREPAT38 gene down-regulated the expression levels of immune genes belonging to the Toll pathway, including SPZ, Myd88, DIF, Cactus, Pell and Toll18W. After treatment with SfREPAT38 dsRNA, S. frugiperda became extremely sensitive to the B. thuringiensis infection, and the survival rate dramatically increased, with 100% mortality by the eighth day. The weight of S. frugiperda larvae was also significantly lower than that of the control groups from the second day onwards. In addition, the genes involved in the Toll signalling pathway and a few antibacterial peptide related genes were down-regulated after treatment. These results showed that SfREPAT38 is involved in the immune response of S. frugiperda larvae through mediating Toll signalling pathway.

12.
Int J Biol Macromol ; 266(Pt 1): 130941, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521305

RESUMO

Recent studies revealed that insect chemosensory proteins (CSPs) both play essential roles in insect olfaction and insect resistance. However, functional evidence supporting the crosslink between CSP and insecticide resistance remains unexplored. In the present study, 22 SfruCSP transcripts were identified from the fall armyworm (FAW) and SfruCSP1 and SfruCSP2 are enriched in the larval cuticle and could be induced by multiple insecticides. Both SfruCSP1 and SfruCSP2 are highly expressed in the larval inner endocuticle and outer epicuticle, and these two proteins exhibited high binding affinities with three insecticides (chlorfenapyr, chlorpyrifos and indoxacarb). The knockdown of SfruCSP1 and SfruCSP2 increased the susceptibility of FAW larvae to the above three insecticides, and significantly increased the penetration ratios of these insecticides. Our in vitro and in vivo evidence suggests that SfruCSP1 and SfruCSP2 are insecticide binding proteins and confer FAW larval resistance to chlorfenapyr, chlorpyrifos and indoxacarb by an insecticide sequestration mechanism. The study should aid in the exploration of larval cuticle-enriched CSPs for insect resistance management.

13.
Virology ; 594: 110038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471199

RESUMO

Our laboratory previously discovered a novel rhabdovirus in the Spodoptera frugiperda Sf9 insect cell line that was designated as Sf-rhabdovirus. Using limiting dilution, this cell line was found to be a mixed population of cells infected by Sf-rhabdovirus variants containing either the full length X accessory gene with a 3.7 kb internal duplication (designated as Sf-rhabdovirus X+3.7) or lacking the duplication and part of the X gene (designated as Sf-rhabdovirus X-), and cells that were negative for Sf-rhabdovirus. In this paper, we found that the Sf-rhabdovirus negative cell clones had sub-populations with different susceptibilities to the replication of Sf-rhabdovirus X+3.7 and X- variants: cell clone Sf9-13F12 was more sensitive to replication by both virus variants compared to Sf9-3003; moreover, Sf9-3003 showed more resistance to X+3.7 replication than to X- replication. RNA-Seq analysis indicated significant differentially expressed genes in the Sf9-13F12 and Sf9-3003 cell clones further supporting that distinct sub-populations of virus-negative cells co-exist in the parent Sf9 cell line.


Assuntos
Rhabdoviridae , Vírus , Animais , Células Sf9 , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Células Clonais , Linhagem Celular , Spodoptera
14.
J Agric Food Chem ; 72(13): 6889-6899, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512131

RESUMO

Spodoptera frugiperda is primarily controlled through chemical insecticides. Our RNA-seq data highlight the overexpression of GSTs4 in indoxacarb-resistant S. frugiperda. However, the exact role of GSTs4 in indoxacarb resistance and its regulatory mechanisms remains elusive. Therefore, we investigated the functional role of GSTs4 in S. frugiperda and explored the underlying post-transcriptional regulatory mechanisms. GSTs4 was highly overexpressed (27.6-fold) in the indoxacarb-resistant strain, and GSTs4 silencing significantly increases the susceptibility of S. frugiperda to indoxacarb, increasing mortality by 27.3%. miR-317-3p and miR-283-5p can bind to the 3'UTR of GSTs4, and the targeting relationship was confirmed by dual-luciferase reporter assays. Injecting miR-317-3p and miR-283-5p agomirs reduces GSTs4 levels by 64.8 and 42.3%, respectively, resulting in an increased susceptibility of S. frugiperda to indoxacarb. Conversely, the administration of miR-317-3p and miR-283-5pantagomirs increases GSTs4 expression and reduces larval susceptibility to indoxacarb. These findings demonstrate that miR-317-3p and miR-283-5p contribute to indoxacarb resistance in S. frugiperda by regulating the overexpression of GSTs4.


Assuntos
Inseticidas , MicroRNAs , Animais , Spodoptera/genética , Spodoptera/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inseticidas/farmacologia , Oxazinas
15.
Int J Biol Macromol ; 264(Pt 1): 130578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432264

RESUMO

Spodoptera frugiperda (Lepidoptera: Noctuidae) is a highly destructive invasive pest with remarkable adaptability to extreme climatic conditions, posing a substantial global threat. Although the effects of temperature stress on the biological and ecological properties of S. frugiperda have been elucidated, the molecular mechanisms underlying its responses remain unclear. Herein, we combined transcriptomic and proteomic analyses to explore the key genes and proteins involved in thermotolerance regulation in S. frugiperda larvae at 42 °C. Overall, 1528 differentially expressed genes (DEGs) and 154 differentially expressed proteins (DEPs) were identified in S. frugiperda larvae under heat stress, including antioxidant enzymes, heat shock proteins (Hsps), cytochrome P450s, starch and sucrose metabolism genes, and insulin signaling pathway genes, indicating their involvement in heat tolerance regulation. Correlation analysis of DEGs and DEPs revealed that seven and eight had the same and opposite expression profiles, respectively. After nanocarrier-mediated RNA interference knockdown of SfHsp29, SfHsp20.4, SfCAT, and SfGST, the body weight and mortality of S. frugiperda larvae significantly decreased and increased under heat stress, respectively. This indicates that SfHsp29, SfHsp20.4, SfCAT, and SfGST play a crucial role in the thermotolerance of S. frugiperda larvae. These results provide insight into the mechanism of heat tolerance in S. frugiperda.


Assuntos
Termotolerância , Animais , Termotolerância/genética , Spodoptera/genética , Proteômica , Perfilação da Expressão Gênica , Transcriptoma , Larva/genética
16.
Pest Manag Sci ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426637

RESUMO

BACKGROUND: Fall armyworm, Spodoptera frugiperda, a formidable agricultural pest, has developed resistance to various synthetic insecticides. However, how S. frugiperda utilizes its limited energy and resources to deal with various insecticides remains largely unexplored. RESULTS: We utilized transcriptome sequencing to decipher the broad-spectrum adaptation mechanism of S. frugiperda to eight insecticides with distinct modes-of-action. Analysis of the Venn diagram revealed that 1014 upregulated genes and 778 downregulated genes were present in S. frugiperda treated with at least five different insecticides, compared to the control group. Exposure to various insecticides led to the significant upregulation of eight cytochrome P450 monooxygenases (P450s), four UDP glucosyltransferases (UGTs), two glutathione-S-transferases (GSTs) and two ATP-binding cassette transporters (ABCs). Among them, the sfCYP340AD3 and sfCYP4G74 genes were demonstrated to respond to stress from six different insecticides in S. frugiperda, as evidenced by RNA interference and toxicity bioassays. Furthermore, homology modeling and molecular docking analyses showed that sfCYP340AD3 and sfCYP4G74 possess strong binding affinities to a variety of insecticides. CONCLUSION: Collectively, these findings showed that S. frugiperda utilizes a battery of core detoxification genes to cope with the exposure of synthetic insecticides. This study also sheds light on the identification of efficient insecticidal targets gene and the development of resistance management strategies in S. frugiperda, thereby facilitating the sustainable control of this serious pest. © 2024 Society of Chemical Industry.

17.
Elife ; 132024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477562

RESUMO

Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push-pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop's constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize-Desmodium push-pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.


Assuntos
Ecossistema , Controle de Pragas , Animais , Agricultura , Larva , Spodoptera , Terpenos , Zea mays
18.
Front Insect Sci ; 4: 1268092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469336

RESUMO

Bioassays were conducted under controlled conditions to determine the response of Spodoptera frugiperda (J. E. Smith) larvae fed with corn materials expressing Bacillus thuringiensis (Bt) insecticidal endotoxins: (1) VT Double Pro® (VT2P) expressing Cry1A.105-Cry2Ab2 proteins and (2) VT Triple Pro® (VT3P) expressing Cry1A.105-Cry2Ab2-Cry3Bb1 proteins. The parameters assessed were: (i) mortality rate, and (ii) growth inhibition (GI) with respect to the control. To conduct this study, larvae were collected from commercial non-Bt corn fields, in four agricultural sub-regions in Colombia, between 2018 and 2020. Fifty-two populations were assessed from the field and neonate larvae from each of the populations were used for the bioassays. The study found that mortality rates in the regions for larvae fed with VT2P corn ranged from 95.1 to 100.0%, with a growth inhibition (%GI) higher than 76.0%. Similarly, mortality rate for larvae fed with VT3P corn were between 91.4 and 100.0%, with a %GI above 74.0%. The population collected in Agua Blanca (Espinal, Tolima; Colombia) in 2020, showed the lowest mortality rate of 53.2% and a %GI of 73.5%, with respect to the control. The population that exhibited the lowest %GI was collected in 2018 in Agua Blanca (Espinal, Tolima, Colombia) with a 30.2%, growth inhibition, with respect to the control. In recent years, the use of plant tissue to monitor susceptibility to fall armyworm has proven to be useful in the resistance management program for corn in Colombia determining that the FAW populations are still susceptible to Bt proteins contained in VT2P and VT3P.

19.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475444

RESUMO

The fall armyworm, Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), a common agricultural pest known for its extensive migration and wide host ranges, causes considerable harm to maize (Zea mays L.). In this study, we utilized two molecular marker genes, COI and Tpi, to compare the genetic characteristics of the collected original samples. Additionally, through an interactive study between S. frugiperda larvae and six maize varieties aiming to understand the insect's adaptability and resistance mechanisms, our analysis revealed that both the COI and Tpi genes identified S. frugiperda as the corn strain. Further examination of the larvae showed significant differences in nutritional indices, digestive, and detoxification enzyme activities. Special maize varieties were found to offer higher efficiency in nutrient conversion and assimilation compared with common varieties. This study revealed adaptations in S. frugiperda's digestive and detoxification processes in response to the different maize varieties. For instance, larvae reared on common maize exhibited elevated amylase and lipase activities. Interestingly, detoxification enzyme activities exhibited different patterns of variation in different maize varieties. The Pearson correlation analysis between nutritional indices, enzyme activities, and the nutritional content and secondary metabolites of maize leaves provided deeper insights into the pest's adaptability. The results highlighted significant relationships between specific nutritional components in maize and the physiological responses of S. frugiperda. Overall, our findings contribute substantially to the understanding of S. frugiperda's host plant adaptability, offering critical insights for the development of sustainable pest management strategies.

20.
Insect Sci ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437152

RESUMO

The fall armyworm (Spodoptera frugiperda) is one of the major pest insects damaging diverse crops including cotton, corn, rice, and sorghum. Fall armyworms have been identified as two morphologically indistinguishable strains, the corn strain, and the rice strain, named after their preferred host-plants. Although initially recognized as host-plant strains, there has been an ongoing debate regarding whether the corn and rice strains should be considered as such. In this article, we present arguments based on recent population genomics studies supporting that these two strains should be considered to be host-plant strains. Furthermore, host-plant adaptation appears to be a driving evolutionary force responsible for incipient speciation in the fall armyworm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA